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LETTER TO THE EDITOR 

Dynamics of an impurity in a ID periodic Burgers flow 

M G Angeluccis, F Tampierits and F MainardiSII 
i Istiluto FISBAT-CNR, Wa Gobetti 101, I40129 Bologna, Italy 
$ Dipanimento di Fisica dell’Universith and I”, I 4 1 2 6  Bologna, Italy 

Received 3 May 1994 

Abstract. We discuss the motion of an impurity advected by a non-uniform, unsteady Bow 
provided.by the 1D Burgers equation with initial sinusoidal velocity. The analysis mainly 
concems the interaction of the impurity wifi the developing shock strucm. Ow numerical 
experiments suggest that the shock cenwe is the final equilibrium position for any impurity, 
independent of its properties and initial conditions: For the cases with small relaxation time the 
numerical results are in agreement with those obtained by a steady simplified analysis. 

The motion of impurities in unsteady flows has many counter-intuitive aspects, and 
its investigation is of great relevance to the use of tracers for flow visualization and 
measurement. 

A fundamental aspect of the problem is the choice of the mathematical model for the 
fluid velocity field (see, for instance [IM]); in this letter we adopt the one-dimensional field 
provided by the Burgers equation. It is well known that this equation has been introduced 
by Burgers to model, in one dimension, some features of the complex phenomenon of 
turbulence, which are now referred to as Burgerlence [5 ] .  

Here the term impurities identifies particles (denser than the fluid) or bubbles (lighter 
than the fluid), which can be distinguished from the surrounding fluid and maintain their 
identity during the motion, typically because of the surface tension. 

For the equation of motion we use a simple form, which retains the main effects of 
inertia and viscous drag; for more detail we refer to [&8]. 

The inerfialforce exerted by a fluid of density p, on a sphere of radius a and density 
p,, is given by 181 

where V is the volume of the impurity (V = 4xa3/3) and w its velocity. CM is the 
added-mass coefficient, which can be exactly computed for low Reynolds number flows 
and spheric bodies [9]; we shall use CM = 0.5 for all cases considered. Moreover we adopt 

. 
dt 

R(t) being the body’s location. 
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The drug force is expressed by the Stokes formula 

Fs = -p[v - U] p, = 6xuupf (3) 

where U is the kinematic viscosity of the fluid. This formula applies to small impurities or 
to low velocity flows, and is usually employed in most prototype studies [lo]. By defining 
the following parameters 

the equation of motion reads 

dv d u  , 
df dt 
- =S'--p(v-u) .  

The relevant time scale for the motion of an impurity is the relaxation time tR ,  i.e. the 
time needed to reduce by a factor e the initial velocity difference vo - u~ between impurity 
and fluid; from (5) 

As a mathematical model of the fluid velocity field we assume a particular solution of 
the ID Burgers equation, 

which is expected to provide large gradients. Our solution of (7) is chosen to satisfy the 
following initial condition 

u(x ,  0) = U&) = -37 sin(xx) (8) 

where we have restricted our attention to the range -1 < x < fl.  The Reynolds number 
associated to this initial flow turns out to be Reo = 2nju. In the following computations 
we assume Reo = 400 which implies v = 5 x 10-3rr. 

If viscosity were absent the formation of a steady shock would be expected in n = 0 
at a critid time t," = 1/z2 zz 0.1. In the presence of viscosity the formation of a true 
shock is inhibited. However, due to the relatively large value of the Reynolds number, 
the negative slope of the initial field increases up to a time f, comparable with t,", and 
then decreases. The steepening of the profile is accompanied by a slow attenuation of the 
amplitude and corresponds to the almost inviscid (nonlinear) behaviour of the solution; the 
successive flattening is accompanied by a remarkable and fast decay in amplitude. We agree 
to refer to t, as the viscous critical time and to the profile of the solution in a sufficiently 
small time interval around t. as the viscous shock. 

The velocity field resulting from (7)-(8) has been evaluated numerically [ll] using 
the general form of the solution, well known in the literature (see, for instance [12,13]), 
expressed as a convolution integral. In this case the critical time turns out to be t ,  w 0.16 
in correspondence of which the shock slope m(t) = u,(O, t )  attains its minimum value, 
m, -296. The shock amplitude decays slowly for t e t* (remember that the inviscid 
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solution suggests a constant amplitude) while for larger times it reduces at a rate consistent 
with a diffusive process. 

We are primarily interested in the interaction of an impurity with the viscous shock, 
where the largest velocity gradients occurs. This interaction will be characterized by the 
parameter 1141 

tR f = -. 
t* 

Small values of f indicate impurities which adjust to the velocity field quite rapidly and 
are expected to follow the fluid motion accurately. On the contrary, large values o f f  
mean that the time of response of the impurity is longer with respect to the viscous 
shock development, so that its behaviour is expected to be only weakly correlated with 
the instantaneous evolution of the velocity field. 

The behaviour of the impurity will be analysed through the parameters a and 6; in 
figure 1 lines of constant f are reported on the (6, a) plane, showing that qualitatively 
similar interaction is expected to occur for particles and bubbles, provided that the ratio 
between time scales is equal. Of course, details of the motion will be different, depending 
on the values of the characteristic parameters. 
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Figure I. Lines of consant e in the (0. sj plane: the s ~ e d  area indicates the stability repion. 
~1 < u5, from the simplified analysis. 

The equation of motion (5) has been numerically integrated on a grid of 512 points. The 
velocity value at the instantaneous impurity position and its derivative have been estimated 
by cubic spline interpolation, using the Akima method 1151. Different initial conditions and 
parameter values have been assumed to investigate the main features of the solutions. 

The effect of varying the parameter f is shown in figure 2 for particles released at 
the same initial conditions. The paaicle with f = 0.1 moves towards the viscous shock 
and reaches it at a time comparable to t,; the local slope of the profile attains its largest 
(negative) value at that time and the particle is pushed away from the viscous shock centre 
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(in fact it crosses the shock, attaining a large negative velocity). Up to times of about 2t,, 
the particle stabilizes, with spiralling motion, in a position XM about midway between the 
shock centre and the point of maximum velocity. After such time, the particle moves slowly 
towards the shock centre, reaching it at about 4t,. 

- n s  C 
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X 

Figure 2 Tmjectaries in the phase plane &ng from (0.05, 0): Line a+ = 0.1. S = 0.6, 
n=0.02:line~=1,~=0~,a=0.05;Line~=l0,6=0.43,a=0.2. 

Increasing the value of up to 1 gives rise to a qualitative similar motion, although the 
particle does not cross the shock. The interaction occurs at about the same time as above, 
but now the response of the particle to the fluid is slower, so that it reaches the shock centre 
after about 13&. A phase of spiralling motion is still present, at a different point, lasting up 
to about 6t,. A further increase o f t  to 10 leads to a longer time (> lSOt,) in approaching 
the stable point, with few oscillations. 

The behaviour of the impurity with small 8 can be interpreted in terms of a simplified 
analysis, based on the idea that the velocity field approximately acts on the impurity as if 
it were steady, since the response time of the impurity is much smaller than the scale of 
evolution of the velocity field 1161. By idealizing the velocity field by means of straight lines 
of slope m independent of time, it results that the motion is unstable if m(m8' + fi') > 0. 
Form positive (outside of the shock) the motion is always unstable, whereas form negative 
(near the shock centre) the motion is unstable if [mi > p'/B'. Thus, for a given impurity a 
critical slope m, -p'/i?' exists; similarly, given the Reynolds number of the flow, which 
limits the maximum slope, a critical radius may be defined as 

so that the motion of smaller impurities is always stable. The stability region is shaded in 
figure 1. 

The motion of the particle with t = 0.1 is in agreement with the above simplified 
analysis. At *e beginning of the motion the particle ,lies in a region of the velocity field 
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with local slope m(x,  t )  so that m, 4 m < 0, and it is driven towards the centre of the 
shock; at t % 0.14 % f, m becomes smaller than mc, and the particle is rejected, after a 
sufficiently long time, m increases to above m,, and the shock centre is still attractive. 

We observe that the position at which the particle stabilizes is such that the local slope 
assumes vdues near to m,. A numerical integration using a velocity profile u(x, t )  = m(r)x 
in the entire (-1,l) range shows that the local curvature of the velocity profile is responsible 
for the spiralling motion. In this case, a particle released at the same initial condition 
approaches the point x = 0 and is then rejected when the slope attains the critical value, 
but no spiralling motion occurs. 

This explanation cannot be extended to the case of higher 8,  because the time variation 
of the profile cannot be neglected; however, some common features appear, as can be noted 
in figure 2. 

The effect of different initial conditions has also been investigated. In figure 3 we show 
the results of varying xo keeping fixed ug = 0, for the w e  8 = 0.1 and U = 0.02. The 
position of stability XM - -0.01 is common to the particles crossing the shock at a time for 
which m -= m,; on the contrary, the particle starting from xo = 0.8 does not reach the shock 
in time to experience the repulsive effect and therefore collapses directly towards x = 0. 

i, 

2 

Figure 3. Trajectories in the phase plane with 
line b-XU = 0.4, a = 0.M; tine o x o  = 0.8, a = 0.02; line d-xu = 0.4, a = 0.001. 

= 0.1. WO = 0 line a-% = 0.05, a = 0.02, 

In addition, the case a = 0.001 -= a, is shown in figure 3 as a further test of the 
simplified analysis: in this case no repulsive interaction occurs with the shock and the 
motion again displays a collapse towards the shock centre. 

In conclusion, the numerical experiments have shown that the viscous shock centre is 
the final equilibrium position for any impurity, independent of its parameters and initial 
conditions. The detailed interaction with the flow is driven by the local features, i.e. mean 
slope and curvature of the velocity profile. 

In particular, if the interaction occurs near the critical time, impurities with small 
relaxation time are rejected or not depending on their radius, according to the simplified 
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analysis carried out for steady flow conditions. Moreover, the rejected impurities are found 
to attain equilibrium positions for intermediate times (of the order of the critical time itself) 
because of the local stmcture of the velocity field. 
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